MTL4576-RTD – MTL5576-RTD TEMPERATURE CONVERTER

RTD/potentiometer input, 2-channel

The MTLx576-RTD converts signals from resistance temperature detectors (RTDs) mounted in a hazardous area, into 4/20mA currents for driving safe-area loads. Software selectable features include input type and characterisation, ranging, monitoring, testing and tagging. Configuration is carried out using a personal computer. The MTLx576-RTD is compatible with 2– and 3–wire RTD inputs. The MTLx576-RTD can also be configured to drive two safe-area loads from a single input.

SPECIFICATION

See also common specification

Number of channels

Two

Signal source

2-/3-wire RTDs to BS 60751 Pt 100, Pt 500, Pt 1000 Cu-50 & Cu-53 Ni 100/500/1000 DIN 43760

Location of signal source

Zone 0, IIC, T4–6 hazardous area Division 1, Group A, hazardous location

Input signal range

0 to 400Ω (0 to 4000Ω Pt & Ni sensors)

Input signal span

10 to 400Ω (10 to 1000Ω Pt & Ni sensors)

RTD excitation current

200µA nominal

Common mode rejection

120dB for 240V at 50Hz or 60Hz

Series mode rejection

40dB for 50Hz or 60Hz

Calibration accuracy (at 20°C)

(includes hysteresis, non-linearity and repeatability)

 $\begin{array}{lll} & & & & \pm 80 m\Omega \\ & & & \\ & \text{Output:} & & \pm 16 \mu\text{A} \\ & & \\ & & \\ & \text{Temperature drift (typical)} \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$

Output: ± 7111527 C $\pm 0.6\mu$ A/°C

Example of calibration accuracy and temperature drift (RTD input)

Span: 250Ω

Accuracy: ± (0.08/250 + 16/16000) x 100%

= 0.13% of span

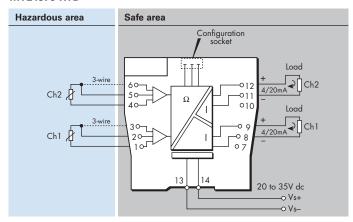
Temperature drift: $\pm (0.007/250 \times 16000 + 0.6) \mu A/^{\circ}C$

 $= \pm 1.0 \mu A/^{\circ}C$

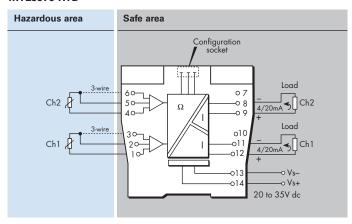
Safety drive on sensor failure

Upscale, downscale, or off

Output range


4 to 20mA nominal into 300 Ω max.

Response time


Configurable - 500 ms default

(Accuracy at 100/200ms - contact MTL)

MTL4576-RTD

MTL5576-RTD

LED indicator

Green: power and status indication Yellow: one provided for channel status Red: alarm indication

Power requirement, Vs with 20mA signal

60mA at 24V

Power dissipation within unit with 20mA signal

1.4W at 24V

Isolation

Functional channel-channel isolation for safe and hazardous-area circuits

Safety description

Refer to certificate for parameters. U_m =253V rms or dc

Configurato

A personal computer running MTL PCS45 software with a

PCL45USB serial interface.

The given data is only intended as a product description and should not be regarded as a legal warranty of properties or guarantee.

In the interest of further technical developments, we reserve the right to make design change

EIROPE (EMEA):

© 2016 Eaton All Rights Reserved Publication No. EPSx576R Rev5 010916

+44 (0)1582 723633 mtlenquiry@eaton.com

+1 800 835 7075 mtl-us-info@eaton.com ASIA-PACIFIC:

+65 6 645 9888 sales.mtlsing@eaton.com